Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 4017, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597633

RESUMO

The paper presents the results of the analysis of the geo-chemo-mechanical data gathered through an innovative multidisciplinary investigation campaign in the Mar Piccolo basin, a heavily polluted marine bay aside the town of Taranto (Southern Italy). The basin is part of an area declared at high environmental risk by the Italian government. The cutting-edge approach to the environmental characterization of the site was promoted by the Special Commissioner for urgent measures of reclamation, environmental improvements and redevelopment of Taranto and involved experts from several research fields, who cooperated to gather a new insight into the origin, distribution, mobility and fate of the contaminants within the basin. The investigation campaign was designed to implement advanced research methodologies and testing strategies. Differently from traditional investigation campaigns, aimed solely at the assessment of the contamination state within sediments lying in the top layers, the new campaign provided an interpretation of the geo-chemo-mechanical properties and state of the sediments forming the deposit at the seafloor. The integrated, multidisciplinary and holistic approach, that considered geotechnical engineering, electrical and electronical engineering, geological, sedimentological, mineralogical, hydraulic engineering, hydrological, chemical, geochemical, biological fields, supported a comprehensive understanding of the influence of the contamination on the hydro-mechanical properties of the sediments, which need to be accounted for in the selection and design of the risk mitigation measures. The findings of the research represent the input ingredients of the conceptual model of the site, premise to model the evolutionary contamination scenarios within the basin, of guidance for the environmental risk management. The study testifies the importance of the cooperative approach among researchers of different fields to fulfil the interpretation of complex polluted eco-systems.

2.
Sci Total Environ ; 648: 787-797, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30138878

RESUMO

In the frame of the project EDOC@WORK3.0, Education and Work on Cloud, a monitoring plan has been carried out in the highly industrialized town of Taranto (one of the most polluted sites of Italy) in order to investigate contemporary indoor and outdoor concentrations of NO2 and SO2 by passive sampling devises (Radiello). Simultaneously indoor and outdoor samplings of NO2 and SO2 were performed from 2nd November 2015 to 2nd December 2015 in nine sites scattered in the investigated area at different quotes and distances from the industrial complex. Our findings show substantial differences between the spatial distributions of the two pollutants and support the hypothesis of two different prevalent sources for NO2 and SO2. In particular, we find diffusive sources of NO2 linked mainly to the vehicular traffic and secondarily to industrial sources. In contrast, SO2 was mainly associated to industrial sources present in the area, representing also a proxy of the mixture of air contaminants associated to industrial processes. Our hypothesis is also confirmed by analysis of data measured by ARPA air quality monitoring stations. Comparison between indoor and outdoor concentrations confirms that outdoor pollutants infiltrate to indoor environments, moreover it highlights potential NO2 indoor sources basically linked to cooking activities, representing adverse health effects for population risk categories such as children or cooks. Considering that urban people spend a lot of their time in indoors, attention should be paid both to outdoor pollutant sources and to indoor sources.

3.
Ann Ig ; 30(1): 34-43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29215129

RESUMO

In most regions of the world, safeguarding groundwater resources is a serious issue, particularly in coastal areas where groundwater is the main water source for drinking, irrigation and industry. Water availability depends on climate, topography and geology. The aim of this paper is to evaluate aquifer recharge as a possible strategy to relieve water resource scarcity. Natural aquifer recharge is defined as the downward flow of water reaching the water table, increasing the groundwater reservoir. Hydro-meteorological factors (rainfall, evapotranspiration and runoff) may alter natural recharge processes. Artificial aquifer recharge is a process by which surface water is introduced with artificial systems underground to fill an aquifer. As a consequence of global warming that has increased the frequency and severity of natural disasters like the drought, the impacts of climate change and seasonality, the artificial recharge has been considered as a viable option. Different direct and indirect techniques can be used, and the choice depends on the hydrologic characteristics of a specific area. In Italy, Legislative Decree no. 152/06 plans artificial aquifer recharge as an additional measure in water management, and Decree no. 100/2016 establishes quantitative and qualitative conditions for recharge. Many projects examine aquifer recharge, such us WADIS-MAR in the southern Mediterranean region, WARBO in Italy and municipal wastewater treatment project in Apulia, a southern Italian region. However, aside from groundwater recharge, the community must foster a spirit of cooperation to manage groundwater as a sustainable resource.


Assuntos
Conservação dos Recursos Hídricos/legislação & jurisprudência , Conservação dos Recursos Hídricos/métodos , Água Subterrânea , Itália
4.
J Environ Manage ; 84(2): 213-28, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16839660

RESUMO

The importance of shared decision processes in water management derives from the awareness of the inadequacy of traditional--i.e. engineering--approaches in dealing with complex and ill-structured problems. It is becoming increasingly obvious that traditional problem solving and decision support techniques, based on optimisation and factual knowledge, have to be combined with stakeholder based policy design and implementation. The aim of our research is the definition of an integrated decision support system for consensus achievement (IDSS-C) able to support a participative decision-making process in all its phases: problem definition and structuring, identification of the possible alternatives, formulation of participants' judgments, and consensus achievement. Furthermore, the IDSS-C aims at structuring, i.e. systematising the knowledge which has emerged during the participative process in order to make it comprehensible for the decision-makers and functional for the decision process. Problem structuring methods (PSM) and multi-group evaluation methods (MEM) have been integrated in the IDSS-C. PSM are used to support the stakeholders in providing their perspective of the problem and to elicit their interests and preferences, while MEM are used to define not only the degree of consensus for each alternative, highlighting those where the agreement is high, but also the consensus label for each alternative and the behaviour of individuals during the participative decision-making. The IDSS-C is applied experimentally to a decision process regarding the use of treated wastewater for agricultural irrigation in the Apulia Region (southern Italy).


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Técnicas de Apoio para a Decisão , Eliminação de Resíduos Líquidos/métodos , Abastecimento de Água , Participação da Comunidade , Conflito de Interesses , Humanos , Itália , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...